

General Certificate of Education

Mathematics 6360

MD01 Decision 1

Mark Scheme

2008 examination - January series

er with the any

Mark schemes are prepared by the Principal Examiner and considered, together with the relevant questions, by a panel of subject teachers. This mark scheme includes any amendments made at the standardisation meeting attended by all examiners and is the scheme which was used by them in this examination. The standardisation meeting ensures that the mark scheme covers the candidates' responses to questions and that every examiner understands and applies it in the same correct way. As preparation for the standardisation meeting each examiner analyses a number of candidates' scripts: alternative answers not already covered by the mark scheme are discussed at the meeting and legislated for. If, after this meeting, examiners encounter unusual answers which have not been discussed at the meeting they are required to refer these to the Principal Examiner.

It must be stressed that a mark scheme is a working document, in many cases further developed and expanded on the basis of candidates' reactions to a particular paper. Assumptions about future mark schemes on the basis of one year's document should be avoided; whilst the guiding principles of assessment remain constant, details will change, depending on the content of a particular examination paper.

Further copies of this Mark Scheme are available to download from the AQA Website: www.aqa.org.uk

Copyright © 2008 AQA and its licensors. All rights reserved.

COPYRIGHT

AQA retains the copyright on all its publications. However, registered centres for AQA are permitted to copy material from this booklet for their own internal use, with the following important exception: AQA cannot give permission to centres to photocopy any material that is acknowledged to a third party even for internal use within the centre.

Set and published by the Assessment and Qualifications Alliance.

The Assessment and Qualifications Alliance (AQA) is a company limited by guarantee registered in England and Wales (company number 3644723) and a registered charity (registered charity number 1073334). Registered address: AQA, Devas Street, Manchester M15 6EX

MD01 - AQA GCE Mark Scheme 2008 January That its Cloud Com

Key to mark scheme and abbreviations used in marking

M	mark is for method								
m or dM	mark is dependent on one or more M marks	and is for metho	d						
A	mark is dependent on M or m marks and is for accuracy								
В	mark is independent of M or m marks and is	for method and	accuracy						
E	mark is for explanation								
$\sqrt{\text{or ft or F}}$	follow through from previous								
	incorrect result	MC	mis-copy						
CAO	correct answer only	MR	mis-read						
CSO	correct solution only	RA	required accuracy						
AWFW	anything which falls within	FW	further work						
AWRT	anything which rounds to	ISW	ignore subsequent work						
ACF	any correct form	FIW	from incorrect work						
AG	answer given	BOD	given benefit of doubt						
SC	special case	WR	work replaced by candidate						
OE	or equivalent	FB	formulae book						
A2,1	2 or 1 (or 0) accuracy marks	NOS	not on scheme						
– <i>x</i> EE	deduct x marks for each error	G	graph						
NMS	no method shown	c	candidate						
PI	possibly implied	sf	significant figure(s)						
SCA	substantially correct approach	dp	decimal place(s)						

No Method Shown

Where the question specifically requires a particular method to be used, we must usually see evidence of use of this method for any marks to be awarded. However, there are situations in some units where part marks would be appropriate, particularly when similar techniques are involved. Your Principal Examiner will alert you to these and details will be provided on the mark scheme.

Where the answer can be reasonably obtained without showing working and it is very unlikely that the correct answer can be obtained by using an incorrect method, we must award full marks. However, the obvious penalty to candidates showing no working is that incorrect answers, however close, earn no marks.

Where a question asks the candidate to state or write down a result, no method need be shown for full marks

Where the permitted calculator has functions which reasonably allow the solution of the question directly, the correct answer without working earns full marks, unless it is given to less than the degree of accuracy accepted in the mark scheme, when it gains no marks.

Otherwise we require evidence of a correct method for any marks to be awarded.

MD01

MD01				JULY TO THE STATE OF THE STATE
Q	Solution	Marks	Total	Comments
1(a)	A K C D M N	M1 A1	2	Bipartite graph All correct
(b)	D-M $(+)$ $E-K$	M1 A1		Attempt at path $D-M+$
	Match: AN, BJ, CL, DM, EK	B1	3	SC: $K - E + M - D$ B1
	Total		5	
2(a)	$\begin{array}{c} y \\ 40 \\ \hline \\ 30 \\ \hline \\ 10 \\ \hline \\ 0 \\ \hline \\ 10 \\ \hline \\ 20 \\ \hline \\ 30 \\ x \\ \end{array}$	B1 B1 B1 B1	5	$y = 5, x = 4$ $x + y = 30$ $2x + y = 40$ $y = \frac{1}{2}x$ feasible region CAO
(b)(i)	Max at $(16, 8) = 56$	M1 A1	2	Extreme point within $\frac{1}{2}$ square of their region
(ii)	Max at $(4, 26) = 82$	M1 A1	2	Extreme point within $\frac{1}{2}$ square of their region
	Total		9	
(10001	L		L

MΙ	D01	(co	nt)

MD01 (cont				40
Q	Solution	Marks	Total	Comments
3(a)	DF 1.2	B1		9 edges
	<i>IH</i> 1.8	M1		SCA
	BC 2.1	A 1		4 7 4th
	AJ or 2.2 EF 2.4	A1		$AJ4^{ ext{th}}$
	HG 2.6	A 1		HG 6 th
	GF 2.7	AI		110 0
	AB 2.8			
	JI 2.9	A1	5	All correct
(b)	20.7	B1	1	
(c)	$A \qquad B \qquad C \qquad D \qquad E$	M1		MST – connected (7+ edges)
		A1	2	
	J I H G F			
	J I H G F			
(d)	<i>EF</i> (or 2.4)	M1		for BC, DF, EF
	21 (81 2 1.1)	A 1	2	, ,
	Total		10	
4(a)(i)				
	<u>27</u> ∱			Reverse
		3.41		
	15/	M1		SCA SCA
	$/$ 15 \setminus_{10}			
		m1		3 values at F 2 or 3 values at F
	12^B 16 E 0			
	12 E 8 37 [36]	m1		2 values at <i>I</i> 1 or 2 values at <i>C</i>
	12/ \ 10 / \	1111		2 values at 1 of 2 values at 0
	16 10 10			
		m1		3 values at J 2 values at A
	0 A			
	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			
	19 10 5 46			
	10 19 10 15			
	21			
	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	A1		All correct
	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	711		
	10 15			
		B1	6	46 at <i>K</i>
	\bigvee_{20H}			
(**)		D1	1	Allana VICDA
(ii)	Route ABEIK	B1	1	Allow KIEBA
(b)	Consider A, D, K, H	B1		PI
(0)	AD + KH = 27 + 30 = 57	M1		
	AH + DK = 20 + 20 = 40	A2,1,0		
	AK + DH = 46 + 40 = 86	-,-,~		
	Total: $308 + 40 = 348$	B1	5	
	Total		12	

<mark>1 (cont</mark> Q	:)		Solution	<u> </u>		Marks	Total	AQA GCE Mark Scheme 2008 January Marths Cloud
<u>×</u> 5(a)(i)	40					B1	1	Comments
(ii)	40					B1	1	
(b)	45 ≤ T ≤	$45 \le T \le 55$				B1	1	
(c)(i)		A	В	С	D			
	A	-	20	38	35	B1		3 indep correct
	В	20	_	18	15			
	C	38	18	-	33			
	D	35	15	33	-	B1	2	All correct
(ii)	A B	D C				M1		Tour or visits all
	20 1	5 33	38 = 106			A1 B1	3	Correct order or their 33

1 (cont))										- AQA GCE Mark Scheme 2008 January Thathsoloud Comments SCA
Q	-			Sol	ution			-	Marks	Total	Comments
6(a)(i)	A 1	<i>B</i> –6	<i>C</i> 11	<i>D</i> -6	<i>K</i> 1	N 0	X	Y	M1		SCA Must use at least 3 variables
					2	1	1	0	A1		1 st pass
					3	2	2	0	A1		2 nd pass
					3	3	3	0	A1	4	All correct
(ii)	A 1	<i>B</i> –10	C 29	<i>D</i> –20	<i>K</i>	N	X	Y			
					2	0	1	(0)	M1		1 st pass Must use at least 3 variables
					3		2	6	A1		2 nd pass
					4		4	4	A1		3 rd pass
					5	2	5	0			
						3	-	0	A1	4	All correct

						my S
					MD01	- AQA GCE Mark Scheme 2008 January Thathscroots Comments For one correct
 1 (cont)	<u> </u>					"Aschou
Q (cont)		Solution		Marks	Total	Comments
`	1 – Shu	ıttle		B1	1	For one correct
	2 – She		!	B1	1	For a second one correct
1	3 – Qui		!		1 _	
	4 – Bub	ble	!	B1	3	For all correct
(b)	Solution	Comparisons	Swaps		1	
(0)	Dolution	Comparisons	Эмирз		1	
	1	1	1	B1, B1	1	Tallies: max 6/8
					1	
	2	2	1	B1, B1	1	
ĺ	3	3	3	B1, B1	1	
	<i>.</i>	J	5	ן זע, דע	1	
	4	3	3	B1, B1	8	
			Total	<u> </u>	11	
8			!	M1	1	Any correct LHS in inequality
	2x + 4y + 3z		!		1	
	3x + 2y + 4z	$z \leq 270$!	A2,1,0	1	OE
	x+3y+5z	≤ 450			1	
					1	
	6x+9y+12		!	M1	1	
	$\Rightarrow 2x + 3y +$	$-4z \ge 240$		A1	1	Allow further correct simplification
		2		3.61	1	36 (1 2)
	2x + 4y + 3	$z \ge \frac{2}{5} (6x + 9y + 1)$	12z)	M1 A1	1	Must have 3 parts correct
		3	•	111	1	
	$2y \ge 2x + 9$	OZ OE		A1	8	Allow further correct simplification
			Total		8	
			TOTAL		75	